
Zwei Forschungsteams gelang es gleichzeitig, den lang gesuchten Kern-Übergang von Thorium zu messen, der extrem präzise Atomkern-Uhren ermöglicht. Die TU Wien ist an beiden beteiligt. Wenn man die exakteste Uhr der Welt bauen möchte, braucht man einen Taktgeber, der sehr oft und extrem präzise tickt. In einer Atomuhr nutzt man dafür die Elektronen in einem Atom, die auf sehr exakt definierte Weise zwischen zwei verschiedenen Zuständen hin und her wechseln können. Noch deutlich exakter allerdings wären Atomkern-Uhren, die nicht Zustände der Elektronen, sondern Zustände des Atomkerns als Taktgeber nutzen. Seit Jahrzehnten suchte man nach passenden Atomkernen für diesen Zweck, und schon lange vermutete man, dass Thorium-Kerne einen geeigneten Kernzustand haben müssten, der zum Bau einer neuen Generation von Hochpräzisions-Uhren taugt. Dieser langgesuchte Kernzustand von Thorium konnte nun erstmals experimentell nachgewiesen werden – und zwar gleich zweimal, von zwei unterschiedlichen internationalen Forschungsteams. Die TU Wien war an beiden Experimenten maßgeblich beteiligt. Die Resultate der beiden Experimente wurden nun gleichzeitig im Fachjournal „Nature" publiziert.
Eine funktionierende Atomkern-Uhr verheißt jedenfalls neue Erkenntnisse bei der Suche nach der mysteriösen Dunklen Materie. Auch die Vermessung der winzigen Unregelmäßigkeiten im Schwerefeld der Erde oder die Satelliten-Navigation könnten damit entscheidend verbessert werden.